
Agreement number: INEA/CEF/ICT/A2017/1565710, Action No: 2017-EU-IA-0136

1

Agreement number: INEA/CEF/ICT/A2017/1565710

Action No: 2017-EU-IA-0136

Deliverable 4
Sustainability

Version No. 1

30/04/2020

Agreement number: INEA/CEF/ICT/A2017/1565710, Action No: 2017-EU-IA-0136

2

Agreement number: INEA/CEF/ICT/A2017/1565710, Action No: 2017-EU-IA-0136

3

Document Information

Activity: Activity 4: Sustainability

Deliverable number: D4

Deliverable title: Dissemination plan

Indicative submission date: 30/04/2020

Actual submission date of
deliverable:

1/05/2020

Main Author(s): Dan Tufiș

Participants: Vasile Florian Păiș, Maria Carp, Radu Ion

Version: V1

History of Versions
Version Date Status Name of the

Author
(Partner)

Contributions Description/
Approval Level

V1 30/04/2020 Completed RACAI

EXECUTIVE SUMMARY

The report presents the sustainability plan and the proposed solution for its implementation. The
objective of this Activity is to build a single access point service that will integrate 7 language specific
processing pipelines. The proposed platform for seven language processing pipe-lines is based on
the concept of containerization in order to ensure time-persistence of the language specific
implementations against the OS updates and other changes between hosts and environments. The
structure of a processed document is the same irrespective of its language and an example of a
processed sentence is exemplified for one of the consortium languages.

Agreement number: INEA/CEF/ICT/A2017/1565710, Action No: 2017-EU-IA-0136

4

Access platform for sustainable data processing for Marcell project

Contents
1. Goals...5

2. General platform diagram... 7

3. Platform requirements...7

3.1. Containerized language processing pipelines...7

3.2. Secure data upload interface..8

3.3. Task scheduling and monitoring...8

3.4. Secure data export interface.. 9

3.5. Data exploration... 9

3.6. Platform technologies...9

3.7. Data storage..10

Agreement number: INEA/CEF/ICT/A2017/1565710, Action No: 2017-EU-IA-0136

5

1. Goals

Sustainability of the project has two aspects: continuous feeding of the repository with new
incoming data and ensuring time-persistence and low maintenance times of the processing pipe-
lines against the OS updates and other changes between hosts and environments.

For the data collection sustainability, we opted to leave the individual crawlers out of the language
processing chains. Their complexity and implementation depend on the data structuring at each
source provider, the access rights granted to the project partner, the format of the published
documents, the possible necessary conversions into raw texts, the rate of data updates, among the
others. The new data may be sent to a partner by the owners based on a contractual agreement, or
may be periodically (e.g. monthly) downloaded by partners from some open-access sites.
Irrespective of the data acquisition procedure, the new text data shall be archived and sent (by each
partner) to the single-access point language processing platform. On the platform, automatically
there will be activated the corresponding language dependent processing flow.

The second aspect of sustainability refers to containerisation of the language specific processing
flows. The Marcell primary text processing and annotation platform must ensure the processing of
new documents that will become available in the future from each of the consortium members. For
this purpose, it must be resistant to operating system updates as well as unforeseen configuration
changes at operating system level. Furthermore, it must accept raw texts in the specific languages of
the project and produce output in the common CoNLL-U Plus format agreed between consortium
members.

Each document begins with a newdoc marker holding the file id (# newdoc id = ro.legal). Each
sentence in a document is labelled by a unique ID (# sent_id = ro_legal.4), is followed by the text of
the respective sentence (# text = …) and then the vertical analysis, UD-like with 14 columns, of the
tokens occurring in the sentence.

The structure of a line is the following, the line fields being tab-separated:

<ID><FORM><LEMMA><UDPOS><XPOS><FEATS><HEAD><DEPREL><_><_><NER><NP>
<IATE><EUROVOCID><EUROVOCMT>

1. ID: Word index, integer starting at 1 for each new sentence; may be a range for multiword
tokens; may be a decimal number for empty nodes (decimal numbers can be lower than 1
but must be greater than 0).

2. FORM: Word form or punctuation symbol.
3. LEMMA: Lemma or stem of word form.
4. UPOS: Universal part-of-speech tag.
5. XPOS: Multext East morpho-syntactic tag (MSD)
6. FEATS: List of morphological features MSD
7. HEAD: Head of the current word, which is either a value of ID or zero (0).
8. DEPREL: Universal dependency relation to the HEAD (root iff HEAD = 0)
9. Not used
10. Not used
11. NER: the BIO format annotation of the current token if it is part of a name entity, (‘_’

otherwise)
12. NP: the BIO format annotation of the current token if it is part of a NP, (‘_’ otherwise)

Agreement number: INEA/CEF/ICT/A2017/1565710, Action No: 2017-EU-IA-0136

6

13. IATE: the annotation of a IATE term by the language-independent code if it is (part of) a IATE
term, (‘_’ otherwise)

14. EUROVOCID: the EUROVOC label if it is a term, (‘_’ otherwise)
15. EUROVOCMT: the MT label in the EUROVOC thesaurus if it is a term, (‘_’ otherwise)

Underscore (_) is used to denote unspecified values in all fields. Trailing underscores are not shown.

An example of the information generated for a sentence (in Romanian) is shown in the next figure:

The IATE and EUROVOC labels are prefixed with a number counting the terms in the current
document. For multi-word terms this counter allows correct term identification. In the exemple
above, MONITORUL (en.: the instructor) is the 10th term in the current document, identified by the
IATE code 1394636 and EUROVOC category 3206 (Education and Communication). However,
MONITORUL OFICIAL (en.: THE OFFICIAL MONITOR) is a different term (the 11th) with IATE code
3522817 for which three EUROVOC categories applies: 3221, 7206, 7231.

After the language specific processing the documents are archived and sent to the next processing
hub, the multilingual clustering and comparable documents semantic alignment phase.

The output of these processing services, together with the raw data will be sent to the ELRC
repository of language resources.

Agreement number: INEA/CEF/ICT/A2017/1565710, Action No: 2017-EU-IA-0136

7

2. General platform diagram

3. Platform requirements

3.1. Containerized language processing pipelines

In order to ensure uninterrupted processing of future materials related to the Marcell project, the
platform must ensure processing pipelines are isolated from external interferences such as:
operating system updates, operating system reconfigurations, changes in other processing pipelines,
updates in used libraries. Keeping this in mind, each text processing pipeline will be provided in the
form of a Docker container, allowing the transformation of a text file into a common format
annotated document.

By using Docker1 containers and embedding all the necessary runtime libraries, independence of any
uncontrolled external updates at OS level is achieved. The single access point will receive an archive
with text documents and the language ID of the documents. The contents of the archives will be
transferred to the specific “dockerized” language processing chain. Each of the language processing
flows has the same input-output behaviour: receives a collection of text documents in the specific
language and outputs a collection of the processed documents, which can be downloaded either
manually or automatically, at automatically formatted URLs. In case of improvements to processing
pipelines for certain languages, consortium members have the ability to provide an updated
container which will replace the previous one, without interfering with other processing flows.
Furthermore, the use of containerization enables scalability of processing resources with the

1 https://www.docker.com/

https://www.docker.com/

Agreement number: INEA/CEF/ICT/A2017/1565710, Action No: 2017-EU-IA-0136

8

number of new documents, by instantiating as many containers as needed to allow for efficient
parallel processing.
The sustainability workflow will have a web-based entry interface where the partners will be able to:

- Verify the progress of the text data annotation
- Download the results of the annotation if desired
- Upload archives of text files if also desired

When faced with new raw text documents, the platform will start the corresponding docker
instance(s) and invoke the processing flow.

Containers must offer a web-service like interface, in REST format, callable from the platform.

The format for such a call should be:

Endpoint: http://<CONTAINER_ADDRESS>:<PORT>/annotate

CONTAINER_ADDRESS and PORT are automatically associated by the platform using the
docker interface

Parameter: file, will be the actual text file to be processed, sent via HTTP POST method

The result of the call should be the resulting CoNLL-Plus format corresponding to the received text
file. In case of error, the response should be either empty or an error message (plain text message,
provided without a starting ‘#’ sign).

This allows for the platform to start any number of containers for each individual language pipeline
in order to allow for efficient parallel processing of text documents.

Containers should be completely self-contained. No external resources should be used. This includes
any language models or additional data files, that should be stored inside the container image.

3.2. Secure data upload interface

The platform will provide an interface for uploading new data files. This will allow for ZIP archives
containing raw texts to be uploaded in the platform in a secure way.

Security will be ensured by using specific user accounts and HTTPS encryption during authentication.

Following the upload, the platform will automatically begin extracting the files from the archive and
will allow the user to explore the extracted files.

3.3. Task scheduling and monitoring

Each operation within the platform is expected to take a long time (directly proportional with the
number and size of uploaded texts). In order to prevent issues arising from possible power outages
or other users performing additional annotations, each operation will be scheduled and executed by
a background task processing engine. This will allow for each operation to be parallelized and will
ensure resuming in case of unexpected system crashes or restarts.

Agreement number: INEA/CEF/ICT/A2017/1565710, Action No: 2017-EU-IA-0136

9

The user interface will allow the user to monitor the task status. It is envisaged to allow at least for
the following states:

 NEW : the task was just created
 SCHEDULING: the task was picked up by the scheduler
 SCHEDULED: the task is waiting for runner processes to become available
 RUNNING: the task is currently running on one or more runner processes
 DONE: the task has finished
 ERROR: unexpected errors during task execution

Additionally, the task engine will provide information regarding the user who started the task, start
time and end time, with the possibility of adding a custom human readable description to the task.

Actual processing will happen inside the docker containers specific to each language as orchestrated
by the runner processes. When all the files are processed, the task status will be changed to “DONE”.

3.4. Secure data export interface

Following the completion of an annotation task and obtaining the CoNLL-U Plus documents, data
must be made available for export. This is achieved via a ZIP creation task that will add all the
generated documents into a ZIP file. Afterwards, the generated ZIP archive can be downloaded by
authorized users.

The archive creation process will make use of the same task engine described above. This will ensure
background creation of the ZIP file.

The resulting archive will be stored in the platform and available for future downloads if needed.

3.5. Data exploration

The platform will allow simple exploration and visualization of data (both raw texts and annotated
documents). This will allow users to have a quick look on the resulting documents even during the
task processing time. Visualized documents can be saved individually, in order to allow checking of
interoperability with other processing chains if needed.

This implementation will be based on simple data grids.

3.6. Platform technologies

In order to ensure durability of the platform’s access point as well as independence of the operating
system, it will be implemented using a server-side scripting language in the form of PHP and
complemented with modern browser technologies in the form of HTML5, JavaScript, CSS.

The platform’s access point will not maintain any connection with a specific underlying operating
system, thus enabling it to be containerized if needed, similar to the text processing pipelines.
Nevertheless, since it uses PHP it may not be required to containerize it as well.

Agreement number: INEA/CEF/ICT/A2017/1565710, Action No: 2017-EU-IA-0136

10

3.7. Data storage

In order to reduce dependencies on other potentially complex systems, such as database
management systems, the platform will store all relevant data inside text-like files on the file system.
These files include raw texts (for the input files), CoNLL-U Plus files (for annotated files), JSON files
(for internal data structures). This behavior will contribute to the sustainability goal, by keeping
dependencies to a minimum and not requiring additional configuration or maintenance of other
systems.

	1. Goals
	2. General platform diagram
	3. Platform requirements
	3.1. Containerized language processing pipelines
	3.2. Secure data upload interface
	3.3. Task scheduling and monitoring
	3.4. Secure data export interface
	3.5. Data exploration
	3.6. Platform technologies
	3.7. Data storage

